

R. Bernstein/ Marina Artuso/ Alexey Petrov FNAL Syracuse Wayne State

TG 3/5 Conveners:

Precision Measurement and Small Experiments:

Tom Blum (U Conn) and Peter Winter (ANL)

Charged Lepton Flavor Violation:

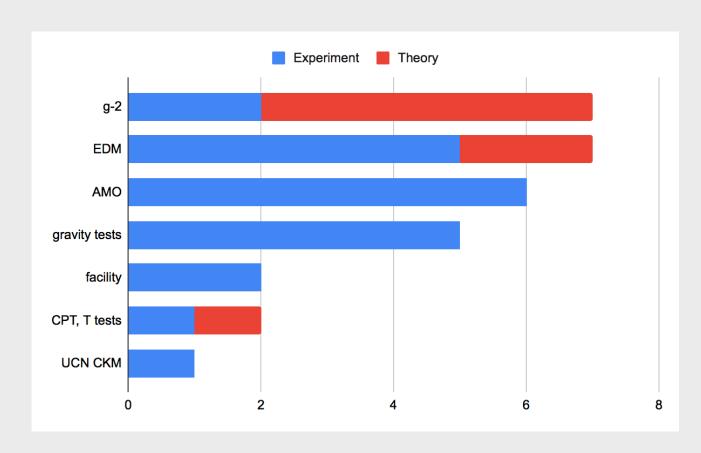
Sacha Davidson (Lyon) and Bertrand Echenard (Caltech)

Standard Disclaimer

- I can't cover everything and if I left your favorite topic out I apologize; please bring it up in questions.
- Ideas and good work belong to so many people, but mistakes are all mine

I will try to do better!

LOI Comments


- # of LOIs is not a good proxy for community interest but it's easy/convenient to do that
 - some large groups submitted small numbers of LOIs, some LOIs were on a restricted topic
- we're looking for general themes
- that's what I want you to carry away

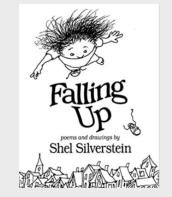
New Cross-Frontier Efforts

- White Papers don't need to be based on your existing LOIs
- A main point of this meeting is generating cross-talk!
- If something interests you and it's cross-topical group or cross-frontier, please go for it!
 - you will see several examples: AMO/RPF, joint EF/RPF and cross RPF workshops

Precision Measurements (TG3)Topics

Precision Measurements in "Small" Experiments

"Fundamental" Physics				
Dedicated Experiment Exploring Gravitational Effects on CP Violation	Gravity-generated / connected CPV			
Strong CP and Neutrino Masses: A Common Origin of Two Small Scales	neutron EDM <-> neutrino masses (cross-frontier)			
Searches for Exotic Short-range Gravity and Weakly Coupled Spin-Dependent Interactions using Slow Neutrons	Gravity tests with neutrons			
Lorentz and CPT Tests with Low-Energy Precision Experiments	L / CPT tests (overview of many opportunities)			
NOPTREX:	T violation with neutrons			
Muonium Gravity Experiment	Gravity test (antimatter)			
Facilities				
Upgraded Low-Energy Muon Facility at Fermilab	Facility (cross-group)			
Potential storage ring and Muon Campus experiments	Muon campus / facility use			
Dipole Moments				
Using lattice QCD for the hadronic contributions to the muon g – 2	Lattice QCD - HVP			
Calculations of nucleon electric dipole moments on a lattice with chiral fermions	Lattice QCD - nucleon EDM			
Hadronic contributions to the anomalous magnetic moment of the muon	Lattice QCD - HVP & HLbL			
Opportunities and New Physics Implications for (g – 2)e,μ	electron and muon MDM: Theory model (cross frontier)			
The Proton Storage Ring EDM Experiment	EDMs (CPV) and axion DM			
Test of the Standard Model and Search for Physics Beyond * Opportunities for Fundamental Physics using Small-scale Storage Ring Experiments	EDMs storage ring (see other LOI in AF5)			
Direct measurement of short tived particle dipole moments at the LHC	MDM at LHC			


LOI Breakdown

AMO			
Atomic/nuclear clocks and precision spectroscopy measurements for dark matter	Precision clocks and spectroscopy/DM		
Optically levitated sensors for precision tests of fundamental physics	Gravity tests (micron-scale) with nanospheres, axion DM		
Probing fundamental physics with highly-coherent nuclear spins	EDM (CPV) and axion DM		
Th-229 Nuclear Clock	Precision clocks		
Mechanical tests of the gravity- quantum interface	Gravity (-quantum) tests		
Doped Cryocrystals for Ultrasensitive EDM Measurements: Snowmass LOI	EDMs, facility for cryo-crystals		
Searches for new sources of CP violation using molecules as quantum sensors	EDMs (CPV) with molecules		

Snowmass CPM TG3/5 Summary

Summary of LOIs and Workshop

- Workshop on Electric and Magnetic Dipole Moments (15-17 Sep)
- After reading these and attending workshop, we see a strong interest in:
 - muons
 - general facility for μ SR and low-energy experiments
 - EDMs and MDMs (and EDM from g-2, proton storage ring)
 - "fundamental physics"
 - gravity/antigravity and CPT tests

Major Improvements Soon!

Multiple facilities, methods, and even sub-fields!

Great Future Expectations

- d_n→10⁻²⁷-10⁻²⁸ e-cm Neutron Spallation/Reactor Sources
- d_e→10⁻³⁰ e-cm or better! (Molecules) ACME
- d_p & d_D→10⁻²⁹e-cm Storage Ring Proposal (BNL/COSY)

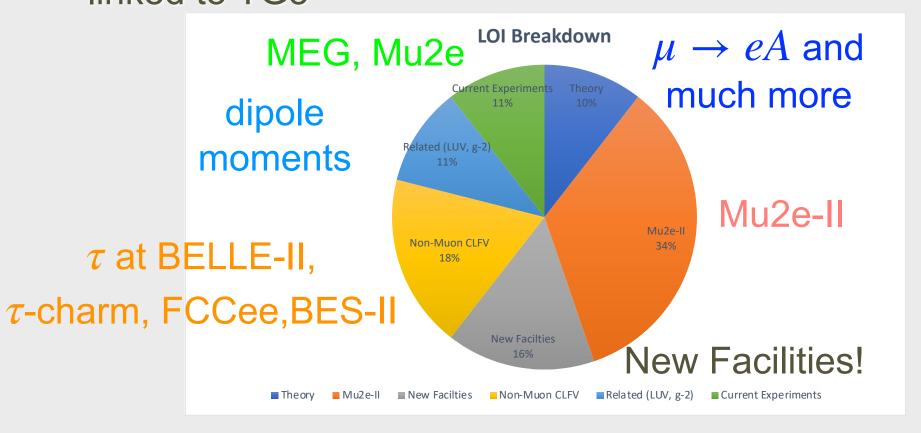
Pave the way for a new generation of storage ring experiments d_e , d_p , d_D , $d(^3He)$, $d(^3He)$, $d(^3He)$

Several orders of magnitude improvement expected

All Very Well Motivated - Must Do Exps.

13

Marciano MDM/EDM Workshop


We need to grasp how these relate to each other

AMO

- This is very exciting and just what should come out of Snowmass
- Some members of AMO community interested in partnership
 - analogy to DNP "fundamental symmetries". Is this group like Fundamental Symmetries in DNP?
 - DNP people (see PIENU LOI, QWeak,...) have always overlapped, moved back and forth; shared interests and culture
 - What are the complementarities? Are there places (proton EDM for example) where AMO is better? How do you quantify this?
 - This is something new; this topical group is the place to understand it.
 - HEP meets AMO workshop planned!

Charged Lepton Flavor Violation (TG5) LOIs

- 38 Total
- Several interlinked LOIs on future muon program, linked to TG3

Charged Lepton Flavor Violation Activities and Cross-Links

- Series of Workshops:
 - muon decays: 10^5 TeV mass scales (dim-6)
 - tau decays
 - heavy quarks (organized with RPF's TG1)
 - heavy states (Higgs, Z, W, exotics organized with EF)
- CLFV and LUV
 - this is important given LHCb, etc. results. The two are linked in ways we don't understand

Theory LOIs

• Light new physics, muonium-antimuonium, and $\Delta L = 2 \ (\mu^- N \to e^+ N^*)$: relation to $0\nu 2\beta$

Theory

Physics of muonium and anti-muonium oscillations

physics potential with MEGII-fwd

Possibility of Search for Bound μ – \rightarrow e–a Decay

Rare muon decays and light new physics

Search for Muon to Positron Conversion in $\mu-\to e-$ Conversion Experiments

Searching for $\mu^- \to e^+$ Conversion at Upcoming Experiments and the Process of Radiative Muon Capture

Theory challenges and opportunities of Mu2e-II

New Programs

- Mu2e-II (x10 Mu2e) is under active development
- Between TG3/5 there seems to be a groundswell for investigating a muon program at PIP-II: links to muon collider and neutrino factories

Upgraded Low-Energy Muon Facility at Fermilab

A New Charged Lepton Flavor Violation Program at Fermilab

A Phase Rotated Intense Source of Muons (PRISM) for a $\mu \to e$ Conversion Experiment

Bunch Compressor for the PIP-II Linac

A new experiment for the $\mu \rightarrow e \gamma$ search

Search for Muonium to Antimuonium Conversion

Muons: Effective Lagrangian

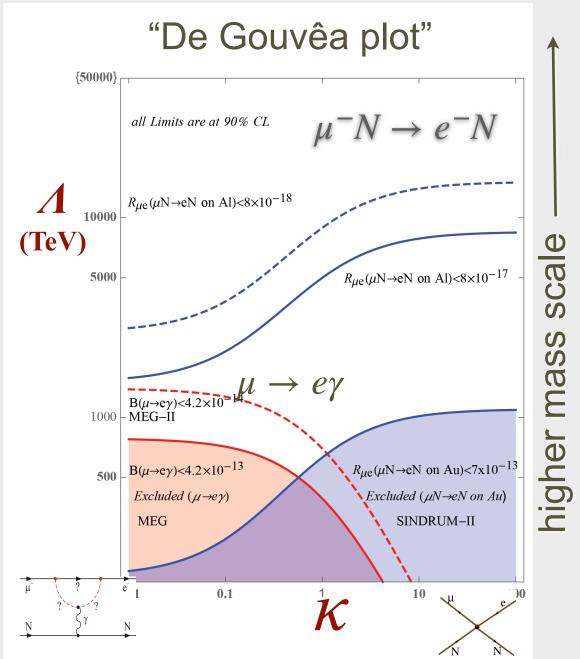
$$\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(\kappa + 1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(1 + \kappa)\Lambda^2} \bar{\mu}_L \gamma_{\mu} e_L (\bar{u}_L \gamma_{\mu} u_L + \bar{d}_L \gamma_{\mu} d_L)$$

Supersymmetry and Heavy **Neutrinos**

Contributes to $\mu \rightarrow e\gamma$

(just imagine the photon is real)

New Particles at High Mass Scale (leptoquarks, heavy Z,...)

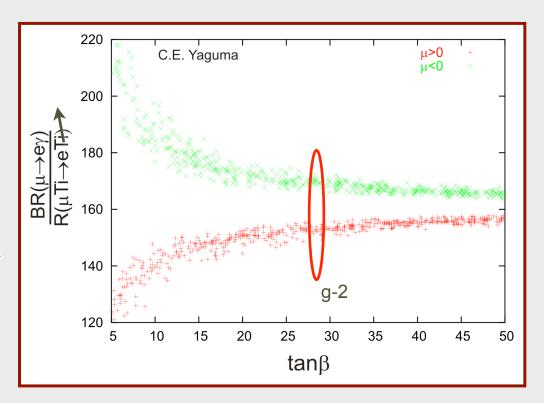

Does not produce $\mu \rightarrow e\gamma$

Comparing Gives More Information! (EFT vs Top Down, sessions 125/126)
FNAL Snowmass CPM TG3/5 Summary

R. Bernstein, FNAL

μe Conversion and $\mu \rightarrow e \gamma$

- MEG/Mu2e/ COMET/Mu3e probing $10^3 - 10^4$ TeV mass scales
- Upgrades at MEG, Mu2e-II are an additional x10-100, x2-3 in mass for dim-6
- Mu3e ($\mu \rightarrow 3e$) also spans entire range in κ

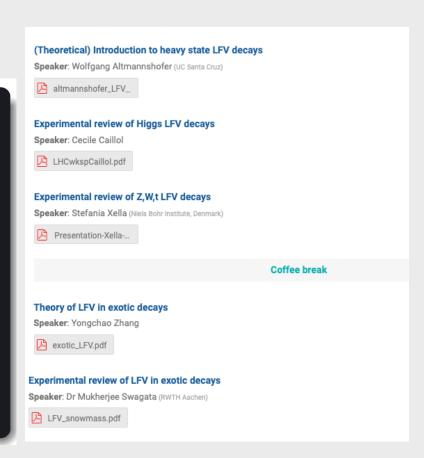


Interconnection Among Measurements

Yaguna, hep-ph/0502014v2

MSSM w mSUGRA

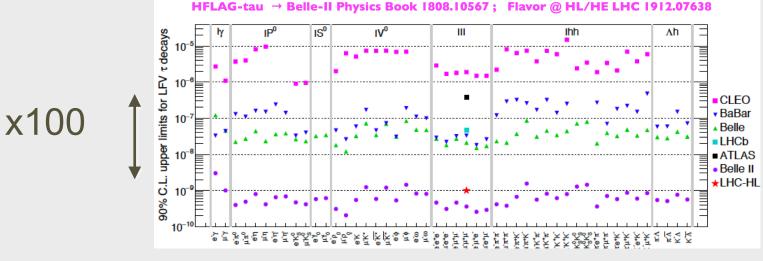
Need:


sign of μ ! from CLFV and MDM

- observation of CLFV in more than one channel, and/or
- evidence from LHC, g-2, or elsewhere

to allow discrimination among different models

CLFV Heavy State Decays


- Workshop 3 Sept
- ► Lepton flavor violating decays of Z, Higgs, top are clear signatures of NP.
- ➤ With the expected experimental sensitivities one can probe NP scales in the 1 10 TeV range.
- ▶ Often strong indirect constraints from low energy lepton flavor violating processes ($\mu \rightarrow e \gamma$ etc.), but in many cases there is complementary sensitivity to the NP.

Altmanshoffer

CLFV in Taus

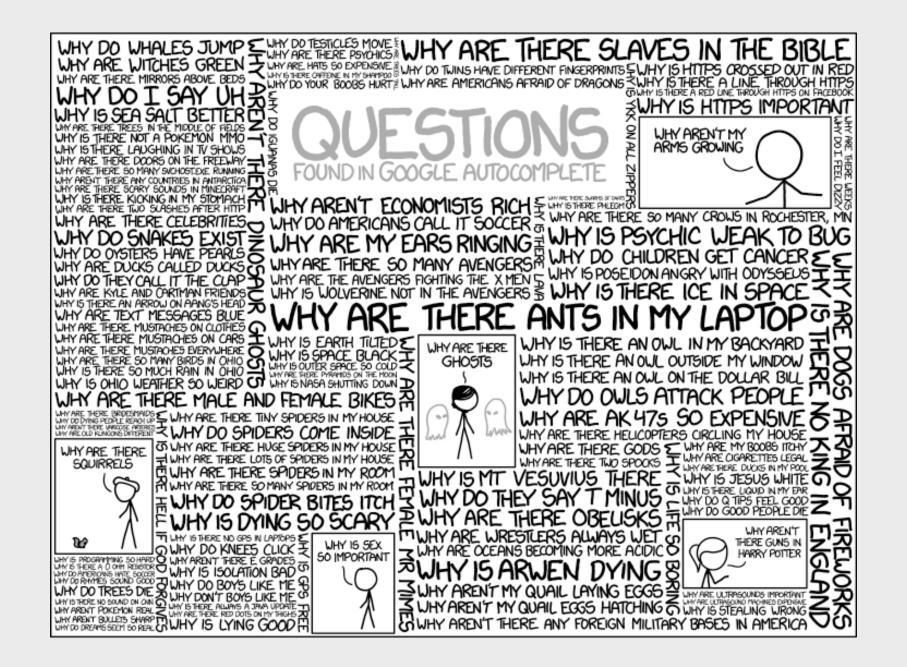
- Very broad portfolio, 1-2 order of magnitudes expected
- au effects can be quite large and these are compelling measurements

	$ au o 3\mu$	$\tau \to \mu \gamma$	$ au o \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$	$ au o \mu\pi$	$ au o \mu \eta^{(\prime)}$	••
${ m O}_{ m S,V}^{4\ell}$	✓	_	_	_	_	_	
O_D	✓	✓	✓	✓	_	_	
$\mathrm{O_{V}^{q}}$	_	_	✓	✓	_	_	
$\mathrm{O_S^q}$	_	_	✓	✓	_	_	
O_{GG}	_	_	✓	✓	_	_	
$\mathrm{O}_{\mathrm{A}}^{\mathrm{q}}$	_	_	_	_	✓	✓	
$\mathrm{O}_{\mathrm{P}}^{\mathrm{q}}$	_	_	_	_	✓	✓	
$\mathcal{O}_{\mathbf{G}\widetilde{\mathbf{G}}}$	_	_	_	_	_	✓	
•••	Tree-level contributions to $T \rightarrow \mu$ processes from low-scale operators						: ssem 81

probing many effective operators

Cirigliano R. Bernstein, FNAL

Takeaways


- There's a lot going on in these TGs
 - Precision Experiments:
 - EDMs
 - storage ring EDMs should be studied
 - AMO connection (more than EDMs)
 - CLFV, both inside and outside muons, is very popular: x10-100 increases in $\mu's$ and $\tau's$
 - Strong Interest for a World Class CLFV/MDM/μSR muon program at PIP-II?

Stay Tuned!

- These two topical groups, precision experiments and charged lepton flavor violation, are full of exciting new ideas
- They relate to each other and across all of Snowmass!
 - probe mass scales far beyond direct reach of colliders and attack questions of fundamental symmetries and the generation puzzle
- Several significant opportunities for worldclass programs with multiple order-ofmagnitude improvements

so much has been done, and perhaps we have a glimpse of what is ahead

